The multiple linear regression in psychotherapy science

-Recommendations for application and interpretation-

Authors

  • Institut für Statistik SFU

DOI:

https://doi.org/10.15135/2022.10.2.132-149

Abstract

This contribution to the series Statistics in Psychotherapy Science aims at presenting methods for the analysis of linear relationships in a best-practice approach. Bivariate correlations are presented as well as the multiple linear regression, which is the focus of the present article. Recommendations are provided for (1) dealing with specific assumptions, (2) the adequate interpretation of results, and (3) statistical reporting. Furthermore, causality and causal interpretation of empirical facts are discussed.

References

Backhaus, K., Erichson, B., Plinke, W., & Weiber, R. (2018). Multivariate Analysemethoden: Eine anwendungsorientierte Einführung (15. Aufl.). Wiesbaden: Springer.

Backhaus, K., Erichson, B., & Weiber, R. (2015). Fortgeschrittene Multivariate Analysemethoden: Eine anwendungsorientierte Einführung (3. Aufl.). Berlin, Heidelberg: Springer Gabler.

Black, T. R. (1999). Doing Quantitative Research in the Social Sciences. An Integrated Approach to Research Design, Measurement and Statistics. London: Sage.

Bortz, J. (2006). Statistik: Für Human- und Sozialwissenschaftler. Berlin, Heidelberg: Springer.

Bortz, J., & Schuster, C. (2010). Statistik: für Human- und Sozialwissenschaftler. Berlin, Heidelberg: Springer.

Bravais, A. (1846). Analyse mathématique sur les probabilités des erreurs de situation de point. Mémoires présentés par divers savants à l’Academie des Sciences de l’Institut de France, 9, 255–332.

Bühner, M., & Ziegler, M. (2009). Statistik für Psychologen und Sozialwissenschaftler. München: Pearson.

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). New York: Academic Press.

Eid, M., Gollwitzer, M., & Schmitt, M. (2011). Statistik und Forschungsmethoden (2. Aufl.).Weinheim Basel: Beltz.

Field, A. (2017). Discovering Statistics Using IBM SPSS Statistics (5th ed.) London: Sage.

Haupt, H., Lösel, F., & Stemmler, M. (2014). Quantile Regression Analysis and Other Alternatives to Ordinary Least Squares Regression. Methodology, 10(3), 81–91. https://doi.org/10.1027/1614-2241/a000077

Kossakowski, J. J., Waldorp, L. J., & van der Maas, H. L. J. (2021). The search for causality: A comparison of different techniques for causal inference graphs. Psychological Methods, 26(6), 719–742. https://doi.org/10.1037/met0000390

Nübling, R, Schulz, H., Schmidt, J., Koch, U. & Wittmann, W. W. (2005). Fragebogen zurPsychotherapiemotivation (FPTM) – Testkonstruktion und Gütekriterien. In R. Nübling, F. A. Muthny & J. Bengel (Hrsg.), Reha-Motivation und Behandlungserwartung (S. 252-270). Bern: Huber.

Pearl, J. (2009). Causal inference in statistics: An overview. Statistics Surveys 3, 96–146. https://doi.org/10.1214/09-SS057

Pearl, J. (2010). An Introduction to Causal Inference. The International Journal of Biostatistics, 6(2). https://doi.org/10.2202/1557-4679.1203

Pearl, J., & Mackenzie, D. (2019). The Book of Why: The New Science of Cause and Effect. New York: Penguin Books.

Shadish, W. R., Cook, T. D., & Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference. New York: Houghton, Mifflin and Company.

Wentura, D., & Pospeschill, M. (2015). Multivariate Datenanalyse: Eine kompakte Einführung. Wiesbaden: Springer.

Wilmers, F., Munder, T., Leonhart, R., Herzog, T., Plassmann, R., Barth, J., & Linster, H. W. (2008). Die deutschsprachige Version des Working Alliance Inventory-short revised (WAI-SR)-Ein schulenübergreifendes, ökonomisches und empirisch validiertes Instrument zur Erfassung der therapeutischen Allianz. Klinische Diagnostik und Evaluation, 1(3), 343–358.

Downloads

Published

2022-12-24

Issue

Section

statistics